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What it is

A binary data container for on-disk, structured
data

Based on the standard de-facto HDF5 format
Free software (BSD license)

Distinctive capabilities:

— NumPy way to select data

— Data can be compressed using many different
compressors (and filters)

— Qut-of-core calculations

— Powerful search in Table objects (including column
indexing)




What it is not

Not a relational database replacement

Not a distributed database

Not extremely secure or safe

Not a mere HDF5 wrapper



Design goals

Allow to structure your data in a hierarchical way.

Easy to use. It implements the Natural Naming scheme
for allowing convenient access to the data.

All the cells in datasets can be multidimensional
entities.
Most of the I/O operations speed should be only

limited by the underlying 1/0 subsystem, be it disk or
memory.

Enable the end user to save and deal with large
datasets with minimum overhead, i.e. each single byte
of data on disk has to be represented by one byte plus
a small fraction when loaded into memory.



About HDF5
(Hierarchical Data File version 5)

A versatile data model that can represent very
complex data objects and a wide variety of metadata.

A completely portable file format with no limit on the
number or size of data objects in the collection.

Implements a high-level APl with C, C++, Fortran 90,
and Java interfaces.

A rich set of integrated performance features that
allow for access time and storage space optimizations.

Free software (BSD, MIT kind of license).



LEVERAGING NUMPY



Easing disk access via NumPy
paradigm

* Retrieving a data set portion
— array|[1]
— array[2:3,2:100:2, ..., :10]
— array|[[3,10,30,1000]]
— array[array2 > 0]

* Out of core operations
— (arrayl**3 / array2) - sin(array3)

You don’t need to learn other paradigms!



Using NumPy as memory container

Python
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DATA STRUCTURES



Data structures

* High level of flexibility for structuring your
data:

— Datatypes: scalars (numerical & strings), records,
enumerated, time...

— Tables support multidimensional cells and nested
records

— Mutidimensional arrays
— Variable length arrays



The Array object

* Easy to create:
— file.createArray(mygroup, ‘array’, numpy_arr)

* Shape cannot change
* Cannot be compressed



The CArray object

* Data is stored in chunks
* Each chunk can be compressed independently

* Shape cannot change



The EArray object

Data is stored in chunks

Can be compressed

Shape can change (either enlarged or shrunk)
Shape must be kept regular



The VLArray object

* Data is stored in variable length rows
 Can be enlarged or shrunk

e Data cannot be compressed



The Table object

Data is stored in chunks

Can
Can
Fielo

pe compressed
oe enlarged or shrunk

s cannot be of variable length



Attributes:
Metadata about data

Date: Jul 24 2006

Observations: 555

CF:[0.1, 0.3, 0.6]




Dataset hierarchy
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INTERACTIVE SESSION



The 1 million song dataset

 The Million Song Dataset is a freely-available
collection of audio features and metadata for
a million contemporary popular music tracks

* 300GB!
* Created using PyTables

http://labrosa.ee.columbia.edu/millionsong/




PyTables distinctive features

e Supports a range of compressors: zlib, bzip2,
1zo and blosc

* Can do out-of-core operations

 Powerful search capabilities for Table objects,
including column indexing



COMPRESSION CAPABILITIES



Why compression?

Lets you store more
data using the same
space

Uses more CPU, but
CPU time is cheap
compared with disk
access

Different
compressors for
different uses:
bzip2, zlib, |zo, blosc

Original
dataset

Compressed
dataset

Decompression

-

Memory (RAM)

Disk
Disk interface ¢




Why Blosc?

Original Compressed

Decompression

-

CPU Cache

Memory (RAM)
Bus Memory ¢




Capacity

OS memory buffers




Memory access vs CPU cycle time
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Laptop computer back in 2005

Lo Decompression speed (256.0 MB, 8 bytes, 19 bits)
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State of the art computer in 2012
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OUT-OF-CORE OPERATIONS



Operating with disk-based arrays

e tables.Expris an optimized evaluator for
expressions of disk-based arrays.

* |tis a combination of the Numexpr advanced
computing capabilities with the high 1/0
performance of PyTables.

e Similarly to Numexpr, disk-temporaries are

avoided, and multi-threaded operation is
preserved.



Avoiding temporaries with Numexpr

Computing "a*b+c" with NumPy. Temporaries goes to memory. Computing "a*b+c" with Numexpr. Tempor:

]
K b c a*b+c

/><\

a*b

Tables.Expr follows the same approach,
but with disk and memory instead



Tables.Expr in action
e Evaluating .25*x**3 + .75*x**2 - 1.5%*x - 2

import tables as tb

f = tb.openFile(h5fname, "a")
x = f.root.x # get the x input
r = f.createCArray(f.root, "r", atom=x.atom, shape=x.shape)

ex = tb.Expr(’.25*x**3 + _75*x**2 - 1.5*%x - 27)
ex.setOutput(r) # output will got to the CArray on disk
ex.eval() # evaluate!

f.close()



Example of out-of-core operation

Computing .25z° +.752* —1.52—2 polynomial

A A pure numpy
numpy.memmap
tables.Expr (no compr)
tables.Expr (zlib)
tables.Expr (lzo)
tables.Expr (blosc)
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ADVANCED QUERY CAPABILITIES



Different query modes

Regular query:

e [ r[‘cl’] for r in table
if r(‘c2’] > 2.1 and r[‘c3’] == True)) ]

In-kernel query:
e [ r[‘cl’] for r in table.where(’(c2>2.1)&(c3==True)’) ]

Indexed query:
e table.cols.c2.createlndex ()

 table.cols.c3.createlIndex()
e [ r[‘cl’] for r in table.where(‘(c2>2.1)&(c3==True)’) ]



Regular and in-kernel queries

Query time for complex query and 10 Mrow (not indexed)
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Disk Size (MB)

Customizable indexes

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 beta2 vs PostgreSQL 8.2.6)
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Indexed query performance

5 Query time for complex query and 1 Grow (indexed)
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